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Strain Differences in Vaginal Responses to the Xenoestrogen Bisphenol A
Xinghua Long,1 2 Rosemary Steinmetz,1 Nira Ben-Jonathan,3 Andrea Caperell-Grant,1 Peter C. M. Young,1
Kenneth P. Nephew,2 and Robert M. Bigsbyt
1Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA; 2Medical Sciences
Program, Indiana University School of Medicine, Bloomington, Indiana, USA; 3Department of Cell Biology, University of Cincinnati
College of Medicine, Cincinnati, Ohio, USA

Bisphenol A (BPA) is the monomer component of polycarbonate plastics and epoxy resins;
human exposure derives from leachate in foodstuffs packaged in certain plastics or from epoxy-
based dental appliances. BPA stimulates prolactin secretion in Fischer 344 (F344) rats but not in
Sprague-Dawley (S-D) rats. The present studies were performed to determine if another classic
estrogen target tissue, the rat vagina, responds to BPA in a strain-specific manner. In F344 rats
BPA increased DNA synthesis in vaginal epithelium with a median effective dose (ED50) of 37.5
mglkg body weight; DNA synthesis was not stimulated in S-D rats by any dose tested. Clearance
of3H-BPA from blood followed the same time course in both strains of rats, with a half-life of 90
min. Scatchard analysis of [3H]estradiol binding showed no strain differences in concentration or
affinity of the vaginal estrogen receptor. BPA increased the level of mRNA for the immediate
early gene, c-fos, with similar dose-response curves in both rat strains. Thus, F344 and S-D rats
exhibit differences in sensitivity to BPA at the level of cell proliferation in the vaginal epithelium.
However, metabolic clearance of BPA and the early events that lejd to the proliferative response,
receptor-ligand interacion and induction of immediate early genes, show no strain differences.
These observations suggest that differences in intermediate effects must account for the difference
in sensitivity of the proliferative response to the xenoestrogen. Furthermore, these results point to
the need for caution in choosing a suitable end point and animal model when seeking to test the
estrogenic effects of xenobiotics. Key wordx bisphenol A, cell proliferation, c-fis, dose response,
rat, vagina, xenoestrogen. Environ Heabl Perct 108:243-247 (2000). [Online 8 February 2000]
http:llebpntl.nichs.nib.govldocs/2000/108p243-2471nglabstra~ctml

Bisphenol A (BPA) is the monomer compo-
nent of polycarbonate plastics. It behaves as
a weak estrogen in classic bioassays, includ-
ing cellular proliferation and cornification of
the vaginal epithelium (1,2) and pituitary
prolactin secretion (3) in the ovariectomized
rat, and it produces estrogen-like effects in
rat mammary gland (4) and developing
mouse prostate (5). Nearly 2 billion pounds
of BPA are manufactured annually in the
United States (6). Although it is almost
entirely in its polymerized form, the BPA
monomer finds its way into foodstuffs as a
leachate of plastic packaging (7,8). Also,
humans can be exposed to BPA from certain
dental appliances (9,10). Because of its estro-
genic activity, there is concern over human
exposure to BPA.

When assessing the biologic activity of a
putative estrogenic compound in animal
model systems, it is important to consider
species and strain differences. We previously
found that BPA increased blood prolactin
levels in Fischer 344 (F344) but not Sprague-
Dawley (S-D) rats (3). Such a finding is con-
gruent with the earlier observation that
estrogens stimulate growth of the pituitary
through replication of the prolactin-secreting
cells in F344 rats but not in outbred rat
strains (11-13). We also found that the uter-
ine epithelium of F344 rats but not that of
S-D rats exhibited a hypertrophic response
to BPA administered in low doses (2). These

observations raise the question of whether
there is a general difference between strains
in responsiveness of estrogen target tissues
to BPA.

The vaginal epithelium is a classic target
tissue for studying the estrogenicity of a com-
pound. Estrogens induce proliferation of the
cells in the basal layer, thereby producing a
multilayered, thick stratified epithelium; with
continued estrogen stimulation the superfi-
cial layer of cells becomes keratinized (14).
More recently, it was shown that the imme-
diate early genes, c-fos and c-jun, are induced
by estrogen in target tissues (15-18). The
induction of these genes is believed to play a
key role in cell proliferation (19,20). In the
present study, we determined the potency of
BPA to induce immediate early gene expres-
sion and DNA synthetic activity in the vaginal
epithelium of F344 and S-D rats.

Materials and Methods
Animals. All procedures performed on ani-
mals followed the NIH Guide for the Care
and Use ofLaboratory Animals (21) and were
approved by the Indiana University Animal
Care and Use Committee. F344 and S-D
rats were supplied at 6-8 weeks of age by
Harlan Sprague-Dawley (Indianapolis, IN).
One week after arrival, animals were ovariec-
tomized under ketamine anesthesia; they
were subjected to experimental manipulation
3 weeks later. BPA (Aldrich Chemical Co.,

Milwaukee, WI) and 17,B-estradiol (E2;
Sigma Chemical Company, St. Louis, MO)
were dissolved in ethanol and diluted in
sesame oil. Compounds were injected
intraperitoneally (ip) in 50 pL of solution.
We injected BPA at 0.2-150 mg/kg body
weight (bw) and E2 at 0.02-2.0 pg/kg bw.

Bromodeoxyuridine immunostaining.
Animals were injected with bromodeoxyuri-
dine (BrdU; 100 mg/kg bw in 500 pL saline,
ip) and killed 1 hr later. Tissue taken from
treated animals was fixed in ethanol-chloro-
form-acetic acid (60:30:10, vol/vol/vol) at
room temperature for 24 hr. The tissue was
embedded in paraffin and cross-sections (6
pm) were prepared. After deparaffinization,
slides were treated with 0.6% H202 in
methanol for 30 min and then subjected to
acid hydrolysis by incubation in 1 N HCl for
8 min, followed by 0.0125 M borate buffer
(pH 8.5) for 15 min. Sections were incubat-
ed in 5% horse serum to block nonspecific
immunostaining and then incubated in anti-
BrdU antibody (Becton Dickson, San Jose,
CA) overnight, followed by incubation in a
biotinylated secondary antibody and avidin-
biotinylated peroxidase complex (Vectastain
ABC Kit; Vector Laboratories, Burlingame,
CA). Diaminobenzidine was used as the
chromogen. We counted the BrdU-labeled
epithelial cells and determined the length of
the underlying basement membrane using
image analysis software (IPLab Spectrum;
Signal Analytics, Vienna, VA). Results were
expressed as the number of labeled cells per
millimeter; using several sections from each
animal, we counted labeled cells along a suffi-
cient length of basement membrane to
include > 1,000 basal epithelial cells.

BPA clearance. To determine the relative
rate of clearance of radiolabeled BPA from
blood after a single bolus intravenous injec-
tion, we anesthetized two animals (150 g
bw) of each strain and injected a tail vein
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with 25 pCi (2.9 pg/kg bw) 3H-BPA (13
Ci/mmol; Moravek Biochemicals, Brea, CA)
in 250 1L balanced salt solution containing
5% bovine calf serum. Blood was collected
into heparinized capillary tubes from a sepa-
rate tail vein at intervals between 5 and 120
min. After centrifugation, 50 1iL plasma was
added to a scintillation vial and counted.
The half-life of the radiolabeled compound
was determined from samples taken between
30 and 120 min.

Estrogen receptor assays. Vaginas from
ovariectomized adult rats were homogenized
and centrifuged to prepare a cytosol, as
described previously (22). Aliquots of the
cytosol were incubated with increasing con-
centrations of [3H]estradiol (Amersham,
Arlington Heights, IL) with or without a
100-fold molar excess of diethylstilbestrol
(Sigma Chemical Company). Bound and free
steroid were separated by the dextran-coated
charcoal method (22).

RNA isolation and RNase protection
assaysfor c-fos. Total RNA was isolated from
vagina by homogenizing the tissues in Tri-
Reagent (Molecular Research Center,
Cincinnati, OH) according to the manufac-
turer's protocol. RNase protection assays
(RPAs) were performed on 5 pg RNA from
each specimen using a kit (RPA II; Ambion,
Austin, TX) according to the manufacturer's
instructions. We derived RNA probes from
c-fos cDNA as described earlier by Nephew et
al. (23); the plasmid was linearized with the
restriction enzyme NcoI. Antisense ribo-
probes were generated from linearized tem-
plates using the MAXIscript kit (Ambion),
T7 RNA polymerase, and 32P-uridine
triphosphate (New England Nuclear, Boston,
MA) according to the kit instructions.
Cyclophilin mRNA levels were determined
using riboprobe derived from the cDNA
template pTRI-cyclophilin (Ambion). After
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Figure 1. DNA synthetic response to BPA in vagi-
nal epithelia of F344 and S-D rats. Ovariectomized
adult rats were treated with BPA at the indicated
doses and with BrdU 20 hr later. Values shown are
mean ± SE; n = 3-5. F344 data from Steinmetz et al. (2).
*p < 0.05 vs. control.

incubation of RNA samples with the radi-
olabeled riboprobe and RNase, the protected
riboprobe was separated on a polyacrylamide
gel (6%). The gel was dried and exposed to
X-ray film (Kodak X-Omat, Sigma Chemical
Company). The X-ray film was analyzed on a
GS-670 Imaging Densitometer (BioRad,
Hercules, CA). The mRNA levels for c-
fos were normalized against the level of
cyclophilin mRNA by dividing the optical
density (OD) of the autoradiographic band
for c-fos by the OD of the corresponding
cyclophilin band ofeach specimen.

Statistical analysis. The number of
BrdU-labeled cells per millimeter or the
mRNA levels (arbitrary units of the OD
ratios) were analyzed by analysis of variance
(ANOVA) across all doses of BPA or E2,
comparing the mean at each dose against the
untreated control by Fisher's protected least
significant difference (PLSD) test.

Results
In an earlier study (2), we determined that
the maximum DNA synthesis in vaginal
epithelium occurred 20 hr after estrogenic
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Figure 2. DNA synthetic response to E2 in vaginal
epithelia of F344 and S-D rats. (A) DNA synthetic
dose response. (8) Expanded view of the low end
of the dose-response curve to allow estimation of
the ED50 values. Values shown are mean ± SE;
n = 3-5. Ovariectomized rats were treated with
the indicated dose of E2 and with BrdU 20 hr later.

stimulation; therefore, we used this time to
determine the dose-response effects of BPA
in F344 and S-D rats. The DNA synthetic
response to BPA in the vaginal epithelium
was dramatically different between the two
strains of rats. In F344 rats there was a clear
dose response, with a statistically significant
increase occurring at 37.5 mg/kg; this dose
also corresponds to the approximate median
effective dose (ED50) for this effect (Figure
1). However, in S-D rats there was no effect
of BPA on vaginal DNA synthesis. In con-
trast to BPA, there was no strain difference
in the vaginal DNA synthetic response to
E2. Although there was a slight difference in
the magnitude of the maximal effect (the S-
D rats had a higher number of labeled cells),
the ED50 for E2 was approximately the same
in each strain (Figure 2). It was also apparent
that the maximal effect of BPA in F344 rats
was approximately one-third of the maximal
effect of E2 (compare Figures 1 and 2).

A simple explanation for the strain differ-
ence might be a difference in the rate of meta-
bolic dearance of injected BPA. To test this,
animals received an intravenous injection of
3H-BPA and the amount of radioactivity
remaining in the blood was determined at
various times thereafter, without regard to the
proportions of parent compound or metabo-
lite present. Disappearance of radiolabeled
BPA was biphasic. After a rapid distribution
phase, there was a sustained loss ofcompound
exhibiting a half-life of approximately 90 min
for each strain (Figure 3). In two of the ani-
mals, approximately one-half of the injected
dose of radiolabel was found in the urine that
remained in the urinary bladder at the end of
2 hr. Thus, there is a rapid clearance of BPA
from the blood, and there does not appear to
be any strain difference in this parameter.

The difference in sensitivity to BPA might
be explained by a difference in the tissue
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Figure 3. Plasma levels of radioactivity following
intravenous injection of 3H-BPA in two animals of
each strain. Details are provided in `Materials
and Methods."
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concentration of estrogen receptor (ER)
between rats. To examine this possibility, we
analyzed the ER content of vaginal tissue
taken from each strain. Scatchard analysis of
[3H]estradiol binding showed that there were
no differences in concentration or affinity of
receptors between the strains (Figure 4).
Combining data from four such analyses, ER
isolated from F344 rats had a Kd of 0.13 ±
0.023 nM (mean ± SE) and a maximum
binding capacity of 266 ± 52.4 fmol/mg pro-
tein (mean ± SE), whereas ER from S-D rats
had a Kd of 0.14 ± 0.018 nM and a binding
capacity of288 ± 68.4 fmol/mg protein.

The DNA synthetic response occurs
several hours after the initial stimulus; this
response probably occurs as the result of a
cascade of events that are initiated by direct
induction of gene transcription. The imme-
diate early gene c-fos is part of the primary
response to estrogenic stimuli. In a preliminary
experiment, animals were treated with 150
mg/kg bw BPA or vehicle and killed at 2, 3,
6, and 24 hr. The RPA of vaginal RNA for
c-fos showed that BPA induced maximum
steady-state levels at 2 hr (Figure 5A); the
time course was similar in both strains. We
then performed BPA dose-response studies
in which animals were sacrificed 2 hr after
administration of the xenobiotic. Stimulation
of c-fos expression by BPA showed no strain
difference; both strains of rats responded
equally well, exhibiting ED50 values at 37.5
mg/kg (Figure SB).

Discussion
Although the xenobiotic BPA is considered
a weak estrogen, there is mounting evidence
that it can in fact elicit full estrogenic activi-
ty in some bioassay systems. Treatment of
immature or adult ovariectomized rats with
BPA produced little or no increase in uter-
ine weight (2,24,25) and it can partially
inhibit the uterotrophic effect of estradiol
(24), responses typical of a partial estrogen.
However, a 3-day treatment of ovariec-
tomized rats with BPA caused the vaginal
epithelium to become fully keratinized
(1,2); this is the response of a full agonist.
Also, prolactin secretion was increased to
the same extent by estradiol or BPA, but
pituitary growth was not induced (3).
Induction of c-fos expression by BPA
reached a magnitude, and followed a time-
course, that would be expected for a natural
estrogen (15-18). In a preliminary study,
we also found that BPA induced expression
of c-jun in both strains of rats, with steady-
state levels reaching maximum at 2-3 hr
after treatment (data not shown). Likewise,
the time-course of the DNA synthetic
response in the F344 vagina following a
single injection of BPA is similar to that
produced by natural estrogens (26,27). In

studies on estrogenic effects in non-repro-
ductive tissues, Dodge et al. (25) found that
BPA lowered cholesterol levels but did not
protect against bone loss in ovariectomized
rats. Thus, depending on the end point and
the animal model under study, BPA may be
considered a partial or a full estrogen ago-
nist in vivo. On the other hand, BPA pro-
duces full estrogenic effects in breast cancer
cells in vitro (9). Perhaps the recently coined
terminology "selective ER modulator"
(SERM) (28) is a more appropriate charac-
terization of the activity of BPA.

The ED50 values for BPA effects, as
determined in this study, were approximate-
ly 40 mg/kg bw. It is unlikely that such a
high dose would be encountered in a single
environmental exposure. However, the
apparent in vivo potency of BPA is depen-
dent on the route of administration and dos-
ing schedule. When BPA was applied by
subcutaneous insertion of a continuous
release capsule that delivered approximately
300 pg/kg bw/day, a full estrogenic response
was produced in the vaginal epithelium of
F344 rats (2). Thus, the biologic potency of
this compound may depend on dosage, dos-
ing schedule, and route of administration.

Biologic potency also depends on the
metabolic clearance rate of a compound, and
this may differ between the two strains of
rats. To address this, we investigated the
pharmacokinetics of a bolus injection of
BPA. Knaak and Sullivan (29) showed that
over the first 24 hr after BPA was adminis-
tered orally to rats, > 80% of the administered
material was excreted as a glucuronide in the
urine or eliminated as free compound and a
hydroxylated metabolite in the feces. Also, 8
days after administration, no BPA was detect-
ed in the animals (29). In the present study,
circulating BPA had a half-life of approxi-
mately 90 min. Although this simple analysis
did not determine whether the radiolabel
remaining in the blood was authentic start-
ing material, it nonetheless indicates that
there is a rapid clearance of BPA from the
blood. Furthermore, the rate of clearance
was similar in F344 and S-D rats, indicating
that strain-specific metabolic clearance does
not play a role in establishing the difference
in the biologic responses. Further studies are
required to determine additional pharmaco-
kinetic parameters under the condition of a
continuous administration regimen.

Our results show that the F344 inbred
rat strain is more sensitive to BPA induction
of DNA synthesis in vaginal epithelium
than the outbred S-D rat strain.
Furthermore, this strain difference appears
to be specific to the weakly estrogenic com-
pound BPA, as there was no difference
between strains in sensitivity to E2 stimula-
tion. Yet, the initial events that lead to the
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Figure 4. Scatchard analysis of vaginal estrogen
receptor. Cytosol was prepared from vaginas of
F344 and S-D rats. A standard saturation analysis
of binding activity for [3H]estradiol was performed
using the dextran-coated charcoal method. A
typical Scatchard plot from one of four such
assays is shown.
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Figure 5. RPA determinations of c-fos mRNA
steady state. (A) An autoradiogram of the RPA
bands for c-fos and cyclophilin at various times
after BPA treatment in F344 rats. (B) Steady-state
levels of c-fos were determined 2 hr after BPA
treatment in F344 and S-D rats. The intensity (OD)
of the c-fos band was normalized against the OD
of the corresponding cyclophilin band. Values
shown are mean ± SE; n = 4.
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DNA synthetic response, ER binding and
immediate early gene transcription, show no
strain differences that account for the differ-
ence in sensitivity to BPA. Although BPA
induced expression of immediate early genes
in S-D rats, this expression was not sufficient
to produce the proliferative response; this is
similar to a single dose of either of the weak
estrogens estriol or 16a-E2, which was able
to induce expression of immediate early
genes but did not induce the growth response
in rat uterus (30,31). In a preliminary study,
we found that three daily injections of estriol
produced a uterine growth response and that
this treatment was more effective in F344
rats than in S-D rats (32).

Our observations suggest that the strain
difference is due to a delayed, or intermediate,
effect rather than a primary response mecha-
nism. Lanahan et al. (33) described a set of
"delayed early genes" whose expression is
induced by growth stimuli, but only after
several hours. Using a short-acting estrogen,
16u-E2, Stack and Gorski (34) showed that
stimulation of DNA synthesis in the rat
uterus is positively correlated to the rate of
protein synthesis at 12 hr after an injection of
estrogen. Cheng and Pollard (35) showed
that uterine expression of c-rasH and
ornithine decarboxylase increased 6-12 hr
after estradiol treatment. Dean and Sanders
(36) suggested that there are two classes of
genes which respond to estrogenic stimuli in
a delayed manner: the secondary response
genes that are dependent on the products of
the early primary response genes for their
stimulation, and the delayed primary
response genes that are dependent on a direct
interaction of steroid receptor with the gene's
promoter and concomitant enhancement by
a product of the early primary response gene.
It may be that the delayed response genes
stimulated by E2 in both S-D and F344 rats
are not induced by BPA in the S-D rat but
are induced by BPA in the F344 rat; this pos-
sibility requires further investigation.

Strain differences in response to estro-
genic stimuli have been previously demon-
strated. Gorski and co-workers (11-13)
found that the potent estrogens diethyl-
stilbestrol or E2 induce an overgrowth of
lactotropes in the pituitary glands of F344
rats but not in those of outbred strains of
rats. Recently, Spearow et al. (37) found
dramatic strain differences in the suscepti-
bility of mice to estradiol-induced disrup-
tion of testicular development. Others have
shown differences in the efficacy of E2 in
stimulation of uterine DNA synthesis
between strains of mice (38,39). Our data
extend these observations to the vaginal
response in rats and point out strain differ-
ences in sensitivity tO a weak estrogen, BPA.
This type of difference must be taken into

account when utilizing the classic vaginal
response model for assessment of estrogenic
activity of test compounds.

The genetic parameters that are responsi-
ble for strain differences in estrogen sensitivi-
ty or efficacy are largely unknown. However,
Roper et al. (40) recently reported that sever-
al genetic quantitative trait loci may be part-
ly responsible for the varied efficacy of E2 to
induce uterine growth in different strains of
mice. Similarly, Wendell and Gorski (13)
identified five quantitative trait loci that
genetically account for more than half of the
difference between estrogen-induced growth
of pituitary glands in F344 rats and Brown
Norway rats, but these chromosomal loci do
not correspond to those that account for
strain differences in uterotrophic responses
in mice (40). At present, although a number
of genes located within the quantitative trait
loci are known, the specific genes responsible
for these strain differences have not been
identified (40). There were no strain differ-
ences in estrogenic stimulation of several
oncogenes or angiogenic factors in the pitu-
itary gland; therefore, these genes are unlike-
ly to mediate this effect (41). Similarly, we
found that the immediate early genes c-fos
and c-jun had no apparent role in establish-
ing the strain difference to BPA stimulation
in the vagina. Also, we have found that the
ERs of each strain of rats have the same
characteristic binding affinity and tissue con-
centration, ruling out alterations at this level
as the simple explanation. As mentioned
above, it may be that a later event, such as
modulation of an intermediate gene,
accounts for the strain differences.
Identification of the genetic traits responsi-
ble for strain differences in sensitivity to the
action of weak estrogens in rodents may
yield valuable insight into the causes of
varied susceptibilities to xenoestrogen action
in humans.
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